Circadian clocks — the fall and rise of physiology (2024)

  • De Mairan, J. J. d'Ortous. Observation botanique. Histoire de l'Academie Royale des Science 35–36 (1729) (in French).

    Google Scholar

  • Duhamel Du Monceau, H. L. in La Physique des Arbres. (H. L. Guerin & L. F. Delatour, Paris, 1759) (in French).

    Google Scholar

  • Zinn, J. G. Über das Schlafen der Pflanzen. Hamburgisches Magazin 22, 40–50 (1759) (in German).

    Google Scholar

  • De Candolle, A. P. in Physiologie végétale (Bechet Jeune, Paris, 1832) (in French).

    Google Scholar

  • Richter, C. P. A behavioristic study of the activity of the rat. Comp. Psychol. Monogr. 1, 1–55 (1922).

    Google Scholar

  • Wever, R. in The Circadian System of Man (Springer, Berlin Heidelberg New York, 1979).

    Book Google Scholar

  • Bünning, E. Über die Erblichkeit der Tagesperiodizität bei den Phaseolus Blättern. Jahrbücher für wissenschaftliche Botanik 81, 411–418 (1932) (in German).

    Google Scholar

  • Biological Clocks. Cold Spring Harb. Symp. Quant. Biol. 25 (1960).

  • Pittendrigh, C. S. Circadian rhythms and the circadian organization of living systems. Cold Spring Harb. Symp. Quant. Biol. 25, 159–184 (1960).

    Article CAS Google Scholar

  • Brown, F. A. J. Response to pervasive geophysical factors and the biological clock problem. Cold Spring Harb. Symp.Quant. Biol. 25, 57–72 (1960).

    Article Google Scholar

  • Halberg, F., Halberg, E., Barnum, C. P. & Bittner, J. J. (eds) Physiologic 24-hour Periodicity in Human Beings and Mice, the Lighting Regimen and Daily Routine. (AAAS Press, Washington DC, 1959).

    Google Scholar

  • von Frisch, K. The Dancing Bees (Methuen and Co., London, 1953).

    Google Scholar

  • Kramer, G. Experiments on bird orientation. Ibis (Lond. 1859) 94, 265–285 (1952).

    Article Google Scholar

  • Hoffmann, K. Experimental manipulation of the orientational clock in birds. Cold Spring Harb. Symp. Quant. Biol. 25, 379–387 (1960).

    Article CAS Google Scholar

  • Hastings, J. W. & Sweeney, B. M. On the mechanism of temperature independence in a biological clock. Proc. Natl Acad. Sci. USA 43, 804–811 (1957).

    Article CAS Google Scholar

  • Richter, C. P. Inherent 24-hour and lunar clocks of a primate — the squirrel monkey. Comp. Behav. Biol. 1, 305–332 (1968).

    Google Scholar

  • Pittendrigh, C. S. & Daan, S. A functional analysis of circadian pacemakers in noctural rodents: I.-V. (the five papers make up one issue with alternating authorship). J. Comp. Physiol. A 106, 223–355 (1976).

    Article Google Scholar

  • Daan, S. et al. Assembling a clock for all seasons: are M and E oscillators in the genes? J. Biol. Rhythms 16, 105–116 (2001).

    Article CAS Google Scholar

  • Mitsui, A., Cao, S., Takahashi, A. & Arai, T. Growth synchrony and cellular parameters of unicellular nitrogen-fixing marine cyanobacterium, Synechococcus sp. strain Miami BG 043511 under continuous illumination. Plant Physiol. 69, 1–8 (1987).

    Article CAS Google Scholar

  • Nishiitsutsuji-Uwo, J. & Pittendrigh, C. S. Central nervous system control of circadian rhytmicity in the co*ckroach. II. The optic lobes, locus of the driving oscillator? Zeitschrift der vergleichenden Physiologie 58, 14–46 (1968).

    Article Google Scholar

  • Eskin, A. Identification and physiology of circadian pacemaker. Fed. Proc. 38, 2570–2572 (1979).

    CAS PubMed Google Scholar

  • Gaston, S. & Menaker, M. Pineal function. The biological clock in the sparrow. Science 160, 1125 (1968).

  • Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206 (1972).

    Article CAS Google Scholar

  • Stephan, F. K. & Zucker, I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl Acad. Sci. USA 69, 1583–1586 (1972).

    Article CAS Google Scholar

  • Zimmermann, N. H. & Menaker, M. The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc. Natl Acad. Sci. USA 76, 999–1003 (1979).

    Article Google Scholar

  • Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978 (1990).

    Article CAS Google Scholar

  • Rothman, B. & Strumwasser, F. J. Phase shifting the circadian rhythm of neuronal acitivty in the isolated Aplysia eye with puromycin and cycloheximide. J. Gen. Physiol. 68, 359–384 (1976).

    Article CAS Google Scholar

  • Takahashi, J. S., Hamm, H. & Menaker, M. Circadian rhythms of melatonin release from individual superfused chicken pineal glands in vitro. Proc. Natl Acad. Sci. USA 77, 2319–2322 (1980).

    Article CAS Google Scholar

  • Groos, G. A. & Hendriks, J. Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci. Lett. 34, 283–288 (1982).

    Article CAS Google Scholar

  • Andrews, R. V. & Folk, J. E. Circadian metabolic patterns in cultured hamster adrenal glands. Comp. Biochem. Physiol. 11, 393–409 (1964).

    Article CAS Google Scholar

  • Langer, R. & Rensing, L. Circadian rhythms of oxygen consumption in rat liver suspension culture: changes of pattern. Z. Naturforsch. B 27, 1117–1118 (1972).

    Article Google Scholar

  • Pohl, R. Tagesrhythmus in phototaktischem Verhalten der Euglena gracilis. Z. Naturforsch. B 3, 367–374 (1948) (in German).

    Article Google Scholar

  • Takahashi, J. S. Cellular basis of circadian rhythms in the avian pineal. in Comparative Aspects of Circadian Clocks (eds Hiroshige, T. & Honma, K.) 3–15 (Hokkaido University Press, Sapporo, 1987).

    Google Scholar

  • Michel, S., Geusz, M. E., Zaritsky, J. J. & Block, G. D. Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259, 239–241 (1993).

    Article CAS Google Scholar

  • Welsh, D. K., Logothetis, D. E., Meister, M. & Reppert, S. M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697–706 (1995).

    Article CAS Google Scholar

  • Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article CAS Google Scholar

  • Brandes, C. et al. Novel features of Drosophila period transcription revealed by real-time luciferase reporting. Neuron 16, 687–692 (1996).

    Article CAS Google Scholar

  • Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685 (2000).

    Article CAS Google Scholar

  • Welsh, D. K., Yoo, S. H., Lui, A. C., Takahashi, J. S. & Kay, S. A. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14, 2289–2295 (2004).

    Article CAS Google Scholar

  • Konopka, R. & Benzer, S. Clock mutants of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 68, 2112–2116 (1971).

    Article CAS Google Scholar

  • Bargiello, T. A., Jackson, F. R. & Young, M. W. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312, 752–754 (1984).

    Article CAS Google Scholar

  • Reddy, P. et al. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38, 701–710 (1984).

    Article CAS Google Scholar

  • Hardin, P. E., Hall, J. C. & Rosbash, M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990).

    Article CAS Google Scholar

  • Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clocks. Nature Rev. Genet. 2, 702–715 (2001).

    Article CAS Google Scholar

  • Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–491 (2000).

    Article CAS Google Scholar

  • Roenneberg, T. & Merrow, M. Circadian light input: omnes viae Romam duc*nt. Curr. Biol. 10, R742–R745 (2000).

    Article CAS Google Scholar

  • Roenneberg, T. & Merrow, M. The network of time: understanding the molecular circadian system. Curr. Biol. 13, R198–R207 (2003).

    Article CAS Google Scholar

  • Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414–415 (2005).

    Article CAS Google Scholar

  • Roenneberg, T. & Merrow, M. Circadian clocks: translation lost. Curr. Biol. 15, R470–R473 (2005).

    Article CAS Google Scholar

  • Aschoff, J. Circadian rhythms: influences of internal and external factors on the period measured under constant conditions. Z. Tierpsychol. 49, 225–249 (1979).

    Article CAS Google Scholar

  • Winfree, A. T. The Geometry of Biological Time (Springer, New York, 1980).

    Book Google Scholar

  • Daan, S. & Aschoff, J. in Handbook of Behavioral Neurobiology (eds Takahashi, J. S., Turek, F. W. & Moore, R. Y.) 7–43 (Kluwer, New York, 2001).

    Book Google Scholar

  • Roenneberg, T., Dragovic, Z. & Merrow, M. Demasking biological oscillators: properties and principles of entrainment exemplified by the Neurospora circadian clock. Proc. Natl Acad. Sci. USA 102, 7742–7747 (2005).

    Article CAS Google Scholar

  • Crosthwaite, S. K., Loros, J. J. & Dunlap, J. C. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81, 1003–1012 (1995).

    Article CAS Google Scholar

  • Albrecht, U., Sun, Z. S., Lee, C. C., Eichele, G. & McLean, V. M. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055–1064 (1997).

    Article CAS Google Scholar

  • Tan, Y., Dragovic, Z., Roenneberg, T. & Merrow, M. Entrainment of the circadian clock: translational and post-translational control as key elements. Curr. Biol. 14, 433–438 (2004).

    Article CAS Google Scholar

  • Freedman, M. S. et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284, 502–504 (1999).

    Article CAS Google Scholar

  • Hattar, S., Liao, H. W., Takao, M., Berson, D. M. & Yau, K. W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    Article CAS Google Scholar

  • Xu, Y. et al. Functional consequences of a CKId mutation causing familial advanced sleep phase syndrome. Nature 434, 640–644 (2005).

    Article CAS Google Scholar

  • Roenneberg, T. et al. A marker for the end of adolescence. Curr. Biol. 14, R1038–R1039 (2004).

    Article CAS Google Scholar

  • Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493 (2001).

    Article CAS Google Scholar

  • Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article CAS Google Scholar

  • Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550 (2001).

    Article Google Scholar

  • Pittendrigh, C. S. On temperature independence in the clock controlling emergence time in Drosophila. Proc. Natl. Acad Sci. USA 40, 1018–1029 (1954).

    Article CAS Google Scholar

  • Aschoff, J. & Wever, R. Spontanperiodik des Menschen bei Ausschluss aller Zeitgeber. Naturwissenschaften 15, 337–342 (1962) (in German).

    Article Google Scholar

  • Aschoff, J., Gerecke, U. & Wever, R. Desynchronization of human circadian rhythms. Jap. J. Physiol. 17, 450–457 (1967).

    Article CAS Google Scholar

  • Feldman, J. F. & Hoyle, M. N. Isolation of circadian clock mutants of Neurospora crassa. Genetics 75, 605–613 (1973).

    CAS PubMed PubMed Central Google Scholar

  • Mitsui, A. et al. Strategy by which nitrogen-fixing unicellular cyanobacteria grow phototrophically. Nature 323, 720–733 (1986).

    Article CAS Google Scholar

  • Roenneberg, T. & Morse, D. Two circadian oscillators in one cell. Nature 362, 362–364 (1993).

    Article Google Scholar

  • Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994).

    Article CAS Google Scholar

  • Hunter-Ensor, M., Ousley, A. & Sehgal, A. Regulation of the Drosophila protein Timeless suggests a mechanism for resetting the circadian clock by light. Cell 84, 677–685 (1996).

    Article CAS Google Scholar

  • Darlington, T. K. et al. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 1599–1603 (1998).

    Article CAS Google Scholar

  • Somers, D. E., Webb, A. A., Pearson, M. & Kay, S. A. The short-period mutant, toc1–1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485–494 (1998).

    CAS Google Scholar

  • Yan, O. Y. et al. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl Acad. Sci. USA 95, 8660–8664 (1998).

    Article Google Scholar

  • Circadian clocks — the fall and rise of physiology (2024)

    References

    Top Articles
    Latest Posts
    Article information

    Author: Errol Quitzon

    Last Updated:

    Views: 5876

    Rating: 4.9 / 5 (79 voted)

    Reviews: 94% of readers found this page helpful

    Author information

    Name: Errol Quitzon

    Birthday: 1993-04-02

    Address: 70604 Haley Lane, Port Weldonside, TN 99233-0942

    Phone: +9665282866296

    Job: Product Retail Agent

    Hobby: Computer programming, Horseback riding, Hooping, Dance, Ice skating, Backpacking, Rafting

    Introduction: My name is Errol Quitzon, I am a fair, cute, fancy, clean, attractive, sparkling, kind person who loves writing and wants to share my knowledge and understanding with you.